Например, Бобцов

АНАЛИЗ ДИНАМИКИ МЕР ЦЕНТРАЛЬНОСТИ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СЛУЧАЙНЫХ ГРАФОВ

Аннотация:

Предмет исследования. При проектировании и обеспечении информационной безопасности систем связи одним из самых мощных инструментов является имитационное моделирование, которое по сравнению с другими методами позволяет рассматривать системы связи большой емкости, улучшать качество решений по управлению ресурсом сети и точнее прогнозировать их последствия. При этом базовыми математическими моделями для анализируемых систем являются случайные графы. Они дают фундаментальное понимание свойств анализируемых сетей и служат основой для имитационного моделирования. Учитывая высокие темпы развития вычислительных возможностей компьютеров и сред имитационного моделирования, особенно актуальным становится вопрос исследования топологических свойств случайных графов, заключающийся в анализе вероятностной динамики мер центральности. Метод. В ходе эксперимента использованы методы расчета центральности для вершин и графа в целом, основанные на научном аппарате теории графов. При исследовании вероятностной динамики математических моделей графов применена методика сравнения, основанная на диаграммах размахов. Основные результаты. Выполнено исследование динамики мер центральности в модели случайного графа Эрдеша–Реньи, модели малого мира Уоттса–Строгатца и свободно масштабируемой модели Барабаши–Альберта. Проведено сравнение мер центральности этих моделей с реальной сетью. Выявлено, что топологические свойства реальной сети наиболее полно описывает модель Барабаши–Альберта. Представленный в статье анализ мер центральности позволяет проследить взаимосвязи между параметрами различных моделей графов, что в свою очередь может быть применено в анализе реальных сетей. Практическая значимость. Полученные результаты могут быть применены при моделировании физических и социальных систем, представленных в виде графов. Представленные материалы полезны специалистам, занимающимся анализом сетей в различных областях науки и техники: социологии, медицины, физики и радиотехники.

Ключевые слова:

Статьи в номере